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SUMMARY 
Implicit iterative schemes based on linearized and non-linear Newton methods are discussed, with resolution of a 
matrix subsystem or a matrix-free method by preconditioned GMRES algorithms. The defaults of convergence 
due to the locality of Newton algorithms can be partially overcome by using stabilizing descent techniques, 
restarting and global strategies such as line search backtracking procedures, or by tuning the iterations once the 
approximate Jacobians are closer to the exact ones. Comparison with a more conventional relaxation method and 
their implementation on parallel architectures are discussed. 
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1 .  INTRODUCTION 

Implicit time-stepping schemes for steady state or unsteady computations of compressible flows on 
unstructured finite-element-type meshes lead to sparse matrices. The feasibility of direct methods for 
computations over complex geometries with a reasonable number of discretization nodes become 
rapidly prohibitive in memory. Point-by-point iterative methods are thus more usually employed. 
However, the global convergence properties and robustness of such methods are not always 
satisfactory. The local character of such schemes can lead to non-converging solutions in critical zones 
where the global nature of the flow field variables would be necessary. Convergence acceleration 
techniques such as multigrid can be an advantage in such cases, as can be other preconditioning 
techniques such as equation preconditioning or matrix preconditioning. As for many gradient 
techniques, a combination of domain decomposition and preconditioning is an important issue. 

Non-linear Newton-GMRES algorithms can be seen as residual least squares problems for which 
descent techniques are stabilizing. Indeed, Newton iterations that are solved approximately by iterative 
methods (inexact Newton methods) require that the current iterate be a descent direction for the 
quadratic form associated with the system. Non-linear algorithms for non-linear systems of equations 
can be of two types. The first relies on an inner algorithm where a system of equations of ‘the Jacobian 
matrix of the system times the vector iterate equals the previous residual’ is to be solved (iteratively, 
directly), while the second involves truly non-linear approaches implying fixed point algorithms, 
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descent methods, non-linear conjugate gradient iterations, etc. For the applications presented in this 
paper, only algorithms of the first type have been investigated. The eventual non-differentiability of the 
numerical method’s Jacobians can be a drawback for the two types. 

Linearized Newton methods have been extensively used in computational fluid dynamics for the last 
12 years. In this case only an approximate linearized Jacobian is necessary together with a linear 
subsystem to be solved by either direct or iterative methods. This method is often used in so-called 
point implicit methods where the implicit scheme is written per time step per point, resulting in 
localized subsystems of the size of a maximum (no neighbour nodes) x (n variables x n variables). 
The major defaults of such methods are the local structure combined with the default of locality of 
Newton methods in themselves. 

Krylov subspace methods minimize the inner iterate residuals on a sequence of subspaces of 
reduced dimension with respect to the total number of iterates. In this paper GMRES (generalized 
minimal residual) Krylov subspace methods are considered. Other projection methods such as 
Amoldi’s are also interesting. 

In order to avoid initially high Krylov dimensions within the GMRES kernel, restarting procedures 
are often employed. However, a trade-off must then be made between the number of restarts (and thus a 
certain loss of precision) and convergence acceleration. The solution obtained by GMRES with a 
restarting procedure is shown to be a descent direction for the non-linear function which represents the 
system. Although the Newton method converges only locally, algorithms such as a line search 
backtracking strategy improve its global convergence. The combination of Newton, GMRES and line 
search backtracking proves to be a valuable convergence tool. 

Let the discretized Navier-Stokes system of equations be written in the following symbolic form: 
find v,, at time t,, such that for given v,- 1 and At, where t,, = t,,- + At, 

F(v,, v,,-I, At)  = 0. ( 1 )  
Newton-GMRES algorithms present essentially two kinds of instabilities. The first is due to the fact 

that Newton methods do not necessarily converge to a global solution. Secondly, the sequence formed 
by FT(v,,)F(v,,) is not always a monotone decreasing sequence, i.e. 

~ ~ ( v , , + I ) ~ ( v , , + l )  5 ~ ~ ( v , , ) ~ ( v , , ) ,  Vn. ( 1 )  
The convergence of the Newton-GMRES algorithm for such systems depends on the fact that the 
GMRES iterate is a descent direction forf(v) = FT(v)F(v).  In particular, in Reference 1 this property 
is shown in the case where the solution is initialized by a zero vector. This result has been extended to 
the case where the Newton-GMRES algorithm also presents several restarting procedures and to 
matrix-free approaches in Reference 2. 

In Section 2 the governing equations and their discretization are discussed. The linear and non-linear 
Newton-GMRES algorithms used are presented in Section 3. In Section 4 we discuss the possibilities 
of preconditioning and stabilizing initialization procedures: Newton methods only converge locally. 
The initial phase of convergence can require an excessive number of iterations in order to approach 
this condition. Finally some results for transonic and hypersonic viscous flows and implementation 
considerations are given. 

2. GOVERNING EQUATIONS AND DISCRETIZATION 

The Navier-Stokes equations for a non-reactive compressible flow can be written in conservative form 
as 
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where W is the state vector, which for a perfect gas in two dimensions is W = (p,  pu, pv,  p Q r ,  with p, 
u and v the density and the velocity components of the flow field respectively. The total energy E is 
defined as 

E = e + 4 (u2 + 3 + d). 
Fk are the convective fluxes: 

Re is the local Reynolds number and (R, S) are the viscous fluxes. The Euler equations are obtained by 
putting 1lRe to zero. The whole system is of mixed hyperboliclparabolic type, with the dominant type 
depending highly on the flow characteristics, which can be very localized, particularly for complex 
viscous flows where several different regimes are present. This means that the mathematical analysis is 
also local and produces disparate conditioning depending upon the local predominant flow structure. 

For reactive flow the equations are augmented in dimension by additional continuity equations for 
the partial densities of the species, with source terms corresponding to the species net production rate 
by chemical reactions. 

Another way of writing the governing equations is to use entropy variables. This automatically 
enforces the entropy-preserving condition for the hyperbolic part of the equations (second law of 
thermodynamics). The equations then become symmetric: 

AoV,, +AiV,i = (KijVj),i + F, (3) 
where A0 = W,y = a W / a V  is symmetric and positive defnite, Ai = F&o is symmetric and 
Kii = (K? + Kh)Ao is symmetric and positive definite. 

This formulation has been adopted by Hughes and co -worke r~ .~~~  The discretization is obtained by a 
Petrov-Galerkin finite element formulation where the test functions are upwinded in the downstream 
direction, introducing viscosity in the direction of gradients (SUPG). This approach has been adopted 
for implementation on connection machine architectures using a node/element data structure. For the 
conservative approach, equation (2), a hybrid finite element (FE)/finite volume (FV) method is used 
where the convective fluxes are evaluated over the geometrical dual space of control volumes of the 
finite element simplexes, allowing robust numerical flux functions coming from purely finite volume 
methods to be formulated as well as conserving the finite element approximation precision. Both 
formulations give (p + i)-order c~nvergence,~-' where p is the order of the FE approximation. The 
viscous terms are evaluated on the finite element simplexes in a standard finite element way depending 
on the degree of approximation. 

The domain R is approximated by a mesh o h  of triangular elements with P' test functions 4 h .  
Both finite element discretizations of the equations at time tn = nAt can be written as 

V V  

for all test functions qh in the chosen finite element discretization. 

thus becomes 
For a discretization point i and for j a neighbouring point of i the conservative formulation of (4) 
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Here Mi denotes the lumped mass matrix and the second term is evaluated by the convective numerical 
flux function @( W,, 5, Zv) along the direction Zv; dCi denotes the boundary of the dual cell associated 
with 

3. NEWTON-GMRES ALGORITHMS 

To solve the non-linear system (4) with an implicit time-stepping procedure, two Newton-type 
algorithms have been explored. 

The first is a linearized Newton algorithm. Following (9, the Taylor series expansion for the fluxes 
around the solution at time tn, FV, gives 

d F  F( W"+') = F( W") + - (W") (  W"+l - W " )  + o( (  W"+l - W y ) .  aw 
We introduce the notation SFV = Wn+' - FV. Then the resolution of the system (5) leads to the 
resolution of 

-sw; Mi +-(W")SW" 8 9  = - F ( W " ) .  
Ati dW 

The Jacobian matrices J of F are approximated either by linearization, or in the case of a differentiable 
numerical flux by an exact Jacobian, or finally by finite difference approximations of the product 
J(u)SU.',~ (See also in the non-linear method.) Both the linearized and exact Jacobian methods have 
been implemented. In the first case the linearized Jacobians for the convective fluxes are approximated 
by a Q-scheme related to the characteristic decomposition, where the term 

Av denotes the eigenvalue matrix and z, the transformation matrix of right eigenvectors in the 
direction nii In the second case an Osher approximate Riemann numerical flux has been chosen since 
it is differentiable in most situations. The flux interface evaluation of the second term in (5) is 
approximated by ( WW;, W!'; GQ); thus 

A pseudo-Newton time-stepping procedure can be formulated as follows: 

0 let u = u" = W" 
Calculate local time step Ati(steady stateflow) 
For n = 1, .  . . , inewtonmax 

Calculate the residual - F( u") (6 )  

Evaluate J = & + 
Solve JSu = - F ( u " )  

I u:, 

#"+I = SU" + U" 
#"+I =+ U" 

The resolution of the linear system is performed by either a relaxation method such as pointhlock 
Jacobi or by a diagonally preconditioned GMRES algorithm. The Jacobians are evaluated at each node 
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point and consist of blocks of 4 x 4 per node for a perfect gas and 9 x 9 for modelization of a five- 
species reacting gas (air).' The above algorithm can be looked at as a pseudo-Newton method when 
n-+ 00. 

The second method is known as the non-linear Newton-GMRES algorithm. At each Newton 
iteration a resolution of the subsystem is solved by Krylov subspace methods. These latter methods 
look for the approximate solution to the system of equations 

min b - J(u0 + z )  1 )  
E X  

in the Krylov space X of dimension k I N  (where N denotes the size of the problem) associated with 
the initial residual ro = b - JUO and the matrix J ,  

x = span{ro,Jro,J2ro,. . . ,~k""-'ro) 
= SPan{Ul, u2,. . . , U L } ,  

which corresponds to solving an over determined system of equations in the least squares sense. The 
method is efficient if there exists a k,- << N. If a sufficient approximation cannot be reached within a 
predetermined dimension of the Krylov space, the algorithm is restarted with the new approximate 
solution. The algorithm combining Newton, GMRES and line search backtracking for the resolution of 
problem (4) can be summarized as follows: 

uo given 
form= 1, ... 

Solve J(urn)Gurn = -F(urn) 

Urn+' = Urn + UGUrn 

E [O, 11 
u is calculated by line search backtracking 
to decreasef(u) = iF'(u)F(u) 

Newton methods have at least local quadratic convergence. However, their global convergence is not 
guaranteed. The backtracking technique is to ensure that the quadratic functional FTF is a monotone 
decreasing one, i.e. 

FT(Vn+I)F(Vn+I) 5 FT(vn)F(vn), bl. (8). 
Hence it is natural to consider descent methods to enforce this condition (8), as proposed in 

Reference 1. Indeed, the above algorithm is efficient if the GMRES iterate Gum is a descent direction at 
urn+', i.e. 

FTJGurn < 0; then 3 u such that (FTF)(u  + a&) < (FTF)(.) .  

Note that V'u) = JT(u)F(u), so p is a descent direction forfat u if FT(ur/(u)p < 0. It is difficult to 
evaluate a priori an optimal value of a maximal Krylov dimension given a certain stopping criterion. 
Also, the memory storage required for the above method depends linearly on the size of this maximal 
Krylov dimension k. However, a small value of k will not lead to a sufficiently accurate solution. A 
restarting procedure is thus introduced fixing a certain Lm, which in general is small. If the initial 
estimate of u~ is insufficient, the algorithm is restarted initializing with this last vector. Several stages 
of restarting can be introduced to avoid increasing the dimension Lax. 
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u given, R = F ( u ) ,  J = g(u) 
6u = 0 
F O R I =  ll...,lmaxDO 

solve - J6u = R by GMRES 
V,,, is an orthogonal subspace of X 
u = u + VmYm 

In Reference 2 the GMRES iterate is shown to be again a descent direction when there is restarting, 
making non-linear Newton-GMRES a promising algorithm to solve complex systems such as (4). 

A particular advantage of GMRES is that the actual Jacobian matrix Jdoes not need to be assembled 
explicitly; the algorithm only requires matrix-vector products. It is thus possible to conceive 'rnatrix- 
free' Newton-GMRES algorithms with a simplified finite difference approximation of the product 
J(  u)6u : 

where E is a small scalar estimated by the consistency and the cut-off 

4. PRECONDITIONING, RESTARTING AND DYNAMIC SIZING 

All the low situations presented here have a convection dominance present somewhere within the field. 
The convergence of linear Newton implicit schemes often suffers from a certain stagnation of the 
residuals within a certain tolerance, beyond which convergence no longer proceeds. The more complex 
the flow and the higher the number of discretization nodes, the more this stagnation effect is evident. It 
is thus necessary to precondition the Jacobian when using gradient methods to ensure convergence. 
Two preconditioners are used here, namely diagonal preconditioning and an ILU-type per block. The 
latter is not possible for matrix-free methods, where right preconditioning has been adopted. In the 
latter case the step J6u = - F becomes JB-'B& = - F: 

Newton convergence is at least linear if each subsystem is solved exactly. Satisfying such a 
requirement is impossible both because of finite precision computer arithmetic and because of the 
complexity of a non-symmetric linear system solver. The tolerance parameters introduced within the 
iterative stages must take account of these problems. Also, as explained above, the choice of Lm is not 
evident. The GMRES complexity increases as the square of will not 
approach the solution sufficiently, thus leading to poor convergence. This problem increases with 
increasing problem size. Restarting and low Lax will also lead to loss of information. A dynamic 
strategy is used to optimize k and the stopping criterion.' 

If r"' denotes the non-linear residual { - F(um)} and E, denotes the ending criterion for Newton, 
assuming a linear convergence for r"', the number of iterations for convergence can be estimated by 

and an insufficient 

Then Lax and E, are updated to give bounds for criteria. 
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Let rD" be the residual aRerj restarts of GMRES. We can define a similar criterion to (9) for ha by 

(10) 
log(llrG) l l / l l~G-') II) 

log(&/ I l r ( O )  II 1 . 
According to this number, the sizes of hi,,,, and 8, are updated to give bounds for these criteria. A 
dynamic strategy to update Lax and E is then established. In Figure 1 the Krylov dimension tends to a 
constant and the dimension of the maximal number of restarts tends to unity once convergence is 
established. This property is conserved upon going to a mesh with almost five times as many points 
(Figure 1, right). This ensures a higher performance ratio. 

As introduced above, the Newton-GMRES algorithm with restarting can be hrther stabilized by 
using a line search backtracking technique which enforces condition (8) and thus global convergence 
(Figure 2). 

5. RESULTS AND PERFORMANCE ANALYSIS 

Results are given for a comparison of a point Jacobi iterative scheme versus a preconditioned GMRES 
algorithm, both on the CM200, CM5 and on a CRAY YMP with the various constructions for the 
implicit matrix as described in detail above. On both machines the results were comparable for 
standard Euler calculations. On the CM200 GMRES took longer because of the scalar product 
operation being slower, whereas on the YMP both algorithms were comparable in performance and 
CPU time.' 

The choice of Lax is dependent upon the problem size. For small meshes (less than 3000 nodes) a 
value of Lax = 10 was sufficient for the convergence of linear Newton methods. For more complex 
problems with a large number of discretization points (z 25,000) values of hi,,, 2 5 4 0  were necessary. 
Values of h, = 25-50 were required for the non-linear scheme (but with an overall reduced number 
of iterations). The number of restarting loops should be restricted as much as possible to avoid growth 
of errors; the balance k,,,,llmax is avoided by the dynamic strategy proposed above. 

An interesting comparison also reveals the dependence on the CFL number for steady state 
calculations when using the relaxation method. The GMRES algorithm is less dependent and allows 
for higher CFL numbers. This is particularly interesting for Navier-Stokes calculations, where the 
maximal value of CFL can be quite low. This allows for a considerable gain in CPU time. 

For large-scale problems such as complex Navier-Stokes calculations, GMRES was found to 
provide valuable convergence acceleration, as the relaxation method tends to stagnate convergence 
after a certain limit (Figures 3 and 4). However, in these cases the Newton-GMRES algorithm proved 

Figure 1. Dynamic decision of k,,,,; initial iterations of a supersonic flow over a cylinder with the SUPG scheme. Left mesh with 
2256 nodes and 4096 elements. Right: mesh with 9399 nodes and 16,384 elements 
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Figure 3. Transonic viscous flow over an NACA 0012 aerofoil, M ,  = 0.5, Re = 1000, and convergence acceleration due to ILU 
preconditioning in the wake. The transonic shock is thrown to the afterbody flow 

J A ( : O H I  ( : F L M A X = 1 5 0  
\. \ I 

. t  ~ 

1"' ,~~ , , , , , , , , ,  1 ,  , , ,  / 1 , 1  

Figure 4. Jacobi versus linearized Newton-GMRES; convergence of the transonic viscous flow over an NACA 0012 aerofoil as in 
Figure 3 
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Figure 5. Isotherms of a hypersonic reactive viscous flow over a generic canopy (mesh with 23,477 nodes and 49,876 elements), 
M ,  = 12.7, ~ ~ - 1 0 ~  

(as expected with such methods) only to be robust once the approximate Jacobians had approached the 
solution Jacobians and was inefficient for the initializing stages. Once a satisfactory order of 
convergence had been reached by the straightforward Jacobi relaxation method, switching on the 
Newton-GMRES method enhanced the convergence further from where the former method had 
saturated (Figures 5 and 6). Another spectacular result in this sense concerned the convergence of a 
hypersonic flow over a ramp with an induced separation bubble at the hinge.* The relaxation iterative 
methods gave stagnating convergence and the length of the separation bubble was still insufficient. By 
turning on the Newton-GMRES method, relaxation stagnation was attained leading to a converged 
solution with the separation bubble correctly captured (Figure 6, right). 

10’ lol ii 
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10’- 

10’- 
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10.- 

10’- 

10- , , , , I I ~ I I I 

0 0  Z Y a O  - 0  75030 l a m 0  0 0  Z Y a O  75030 l a m 0  

Figure 6. Left: convergence of the hypersonic reactive viscous flow of Figure 5 when the external non-linear Newton algorithm is 
turned on after two orders of convergence. Right: convergence of a hypersonic compression ramp computation where after 6000 

Jacobi iterations the solution was insufficiently converged; by turning on Newton-GMRES for a further 1500 iterations, 
convergence was attained 



966 R. CHOQUET, P. LEYLAND AND T. TEFY 

EXPLICIT v c m s  IMPLICIT. 1649 nocuds 
lb , 

Figure 7. Convergence acceleration of the Newton algorithm using an exact Jacobian 

Another test was performed on the preconditioning. Straightforward diagonal preconditioning is 
only really appropriate for convection-dominated non-complex flows. In the case of, for instance, a low 
transonic flow past an aerofoil, a shock is swept back at the trailing edge. A zone surrounding half the 
aerofoil to three chords in the wake was designated and an ILU preconditioning was applied. 
Elsewhere the diagonal one was maintained. A net improvement in convergence was obtained. 

Finally, a novel comparison is shown in Figure 7, where the method with an exact Jacobian is 
compared with one using the finite difference approximation (see Section 2). The Newton method with 
the exact Jacobian did not converge when initializing with uniform flow conditions. Indeed, Newton 
methods require that the solution Jacobian be close to the tangent of the exact solution to ensure 
convergence and in the initial phases this is extremely hard to ensure. However, once the solution has 
started to converge, such that the exact Jacobian becomes close to the tangent, turning on the Newton 
method gives a spectacular increase in the rate of convergence. This tendency increases with increasing 
problem size. 

6. CONCLUSIONS 

In conclusion, linearized implicit or non-linear implicit methods for solving the complex systems of 
compressible flow can be performed with reasonable success by the use of Newton-GMRES 
algorithms. However, the highly localized physical phenomena give rise to very disparate conditioning 
of the block matrices and these global iterative methods applied in this point implicit way can thus 
result in unstable convergence properties. The possibility of coupling such methods to domain 
decomposition ones with specific conditioning per block seems to be promising. 
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